domingo, 6 de julio de 2014

¿Alguna vez escuchaste hablar acerca de la sucesión de Fibonacci? ¿Imaginas una ecuación capaz de explicar matemáticamente todo en el universo? ¿Crees que semejante cosa realmente sería posible?

La sucesión de Fibonacci


La sucesión de Fibonacci consta de una serie de números naturales que se suman de a 2, a partir de 0 y 1. Básicamente, la sucesión de Fibonacci se realiza sumando siempre los últimos 2 números (Todos los números presentes en la sucesión se llaman números de Fibonacci) de la siguiente manera:
0, 1, 1, 2, 3, 5, 8, 13, 21,34...
Fácil, ¿no? (0+1=1 / 1+1=2 / 1+2=3 / 2+3=5 / 3+5=8 / 5+8=13 / 8+13=21 / 13+21=34...) Así sucesivamente, hasta el infinito.

Por regla, la sucesión de Fibonacci se escribe así: xn = xn-1 + xn-2. Hasta acá todo bien, pero de seguro estás preguntándote ¿quién fue Fibonacci?
Bien, Fibonacci fue un matemático italiano del siglo XIII, el primero en describir esta sucesión matemática. También se lo conocía como Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo y ya hablaba de la sucesión en el año 1202, cuando publicó su Liber abaci. Fibonacci era hijo de un comerciante y se crió viajando, en un medio en donde las matemáticas eran de gran importancia, despertando su interés en el cálculo de inmediato.
Se dice que sus conocimientos en aritmética y matemáticas crecieron enormemente con los métodos hindúes y árabes que aprendió durante su estancia en el norte de África y luego de años de investigación, Fibonacci dio con interesantes avances. Algunos de sus aportes refieren a la geometría, la aritmética comercial y los números irracionales, además de haber sido vital para desarrollar el concepto del cero.

Número Áureo

Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como "unidad" sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.

Asimismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.

El número áureo, también conocido como "número de oro" o "divina proporción", es una constante que percibimos a diario, aunque apenas nos demos cuenta. Aparece en las proporciones de edificios, cuadros, esculturas, e incluso en el cuerpo humano. Un objeto que respeta la proporción marcada por el número áureo transmite a quien lo observa una sensación de belleza y armonía. Veamos un poco más en qué consiste.

El número áureo es el punto en que las matemáticas y el arte se encuentran. Existen en matemáticas tres constantes que son definidas con una letra griega:


p=(3,14159…).

Pi, es la relación entre la longitud de la circunferencia y su diámetro.


e=(2,71828…)

e, es el límite de la sucesión de término general (1+1/n)^n. e es el único número real cuyo logaritmo natural es 1.


F= (1,61803…).

Phi, el número de oro. Matemáticamente hablando, podemos definirlo como aquel número al que, tanto si le sumamos uno como si lo elevamos al cuadrado, sale el mismo resultado.


Los tres números tienen infinitas cifras decimales y no son periódicos (sus cifras decimales no se repiten periódicamente). Todos ellos son, por tanto, números irracionales.